-
Making the Brazilian ATR-72 Spin
by
[sc name=”post_comments” ][/sc]
Note: This story was corrected on August 10th at 10:23 am, thanks to the help of a sharp-eyed reader.
Making an ATR-72 Spin
I wasn’t in Brazil on Friday afternoon, but I saw the post on Twitter or X (or whatever you call it) showing a Brazil ATR-72, Voepass Airlines flight 2283, rotating in a spin as it plunged to the ground near Sao Paulo from its 17,000-foot cruising altitude. All 61 people aboard perished in the ensuing crash and fire. A timeline from FlightRadar 24 indicates that the fall only lasted about a minute, so the aircraft was clearly out of control. Industry research shows Loss of Control in Flight (LOCI) continues to be responsible for more fatalities worldwide than any other kind of aircraft accident.
The big question is why the crew lost control of this airplane. The ADS-B data from FlightRadar 24 does offer a couple of possible clues. The ATR’s speed declined during the descent rather than increased, which means the aircraft’s wing was probably stalled. The ATR’s airfoil had exceeded its critical angle of attack and lacked sufficient lift to remain airborne. Add to this the rotation observed, and the only answer is a spin.
Can a Large Airplane Spin?
The simple answer is yes. If you induce rotation to almost any aircraft while the wing is stalled, it can spin, even an aircraft as large as the ATR-72. By the way, the largest of the ATR models, the 600, weighs nearly 51,000 pounds.
Of course, investigators will ask why the ATR’s wing was stalled. It could have been related to a failed engine or ice on the wings or tailplane. (more…)
-
How the FAA Let Remote Tower Technology Slip Right Through Its Fingers
by
[sc name=”post_comments” ][/sc]
In June 2023, the FAA published a 167-page document outlining the agency’s desire to replace dozens of 40-year-old airport control towers with new environmentally friendly brick-and-mortar structures. These towers are, of course, where hundreds of air traffic controllers ply their trade … ensuring the aircraft within their local airspace are safely separated from each other during landing and takeoff.
The FAA’s report was part of President Biden’s Infrastructure Investment and Jobs Act enacted on November 15, 2021. That bill set aside a whopping $25 billion spread across five years to cover the cost of replacing those aging towers. The agency said it considered a number of alternatives about how to spend that $5 billion each year, rather than on brick and mortar buildings.
One alternative addressed only briefly before rejecting it was a relatively new concept called a Remote Tower, originally created by Saab in Europe in partnership with the Virginia-based VSATSLab Inc. The European technology giant has been successfully running Remote Towers in place of the traditional buildings in Europe for almost 10 years. One of Saab’s more well-known Remote Tower sites is at London City Airport. London also plans to create a virtual backup ATC facility at London Heathrow, the busiest airport in Europe.
A remote tower and its associated technology replace the traditional 60-70 foot glass domed control tower building you might see at your local airport, but it doesn’t eliminate any human air traffic controllers or their roles in keeping aircraft separated.
Max Trescott photo Inside a Remote Tower Operation
In place of a normal control tower building, the airport erects a small steel tower or even an 8-inch diameter pole perhaps 20-40 feet high, similar to a radio or cell phone tower. Dozens of high-definition cameras are attached to the new Remote Tower’s structure, each aimed at an arrival or departure path, as well as various ramps around the airport.
Using HD cameras, controllers can zoom in on any given point within the camera’s range, say an aircraft on final approach. The only way to accomplish that in a control tower today is if the controller picks up a pair of binoculars. The HD cameras also offer infrared capabilities to allow for better-than-human visuals, especially during bad weather or at night.
The next step in constructing a remote tower is locating the control room where the video feeds will terminate. Instead of the round glass room perched atop a standard control tower, imagine a semi-circular room located at ground level. Inside that room, the walls are lined with 14, 55-inch high-definition video screens hung next to each other with the wider portion of the screen running top to bottom.
After connecting the video feeds, the compression technology manages to consolidate 360 degrees of viewing area into a 220-degree spread across the video screens. That creates essentially the same view of the entire airport that a controller would normally see out the windows of the tower cab without the need to move their head more than 220 degrees. Another Remote Tower benefit is that each aircraft within visual range can be tagged with that aircraft’s tail number, just as it might if the controller were looking at a radar screen. (more…)
-
Are You Current with the New Airman Certification Standards?
by
[sc name=”post_comments” ][/sc]
It should go without saying that flying is a dynamic pursuit, so that means that learning and being able to proficiently perform the skills (and understand the knowledge that supports them) is not a one-and-done endeavor whose conclusion is the issuance of an airman’s certificate. A good way to assess your current competency is to periodically examine the Airman Certification Standards for the certificates and ratings you now possess.
The FAA recently issued new ACS for Airline Transport Pilot and Type Rating for Airplane: ACS-11A; Commercial Pilot, Airplane: ACS-7B; Commercial Pilot, Rotorcraft Helicopter: ACS-16; Flight Instructor, Airplane: ACS-25; Flight Instructor, Instrument Airplane and Helicopter PTS: 8081-9E; Flight Instructor, Rotorcraft Helicopter: ACS-29; Instrument Rating, Airplane: ACS-8C; Instrument Rating, Helicopter: ACS-14; Private Pilot, Airplane: ACS-6C; Private Pilot, Rotorcraft Category Helicopter: ACS-15. There is also an updated ACS Companion Guide for Pilots.
This can be a frightening review for pilots, especially for those who haven’t assiduously evaluated and maintained their knowledge and skill currency and those (like me) who earned their certificates and ratings several decades ago. But fear not: start at the beginning and see how you’d fare if you had to pass a checkride based on the new standards.
The 87-page Private Pilot, Airplane: ACS-6C is way different than the comparatively skimpy practical test standards I faced in June 1976. The areas of operation seem the same, but the make or break are in the details.
For example, making the transition from old school paper and pencil cross-country flight planning for Task D. This ” Note: Preparation, presentation, and explanation of a computer-generated flight plan is an acceptable option,” says that an electronic flight bag plan is an acceptable replacement for paper and pencil, so I’ve got some schooling to do because it appears in several subsequent tasks such as Navigation and Radar Services.
It’s nice to see that the Navigation still opens with Pilotage and Dead Reckoning. But I wonder how. In the aerial epoch of GPS, how many aviators have maintained these skills since their checkride? One guesses that given today’s avionics suites, they are more current on managing “automated navigation and autoflight systems.”
My assessment was going well until the Emergency Operation Area of Operation dredged up no memory of Emergency Descents or Emergency Approaches and Landings. There’s two more for the schooling list. That wasn’t as bad as I expected, and some of the new terminology was entertaining, such as “magnetic direction indicator.” Isn’t that a compass?
I wonder what surprises the Instrument Rating, Airplane: ACS-8C, and Commercial Pilot, Airplane: ACS-7B will reveal? And I’m curious to know what your review of the current ACS revealed? Scott Spangler, Editor
-
EFB v. Paper: Weight & Reliability
by
[sc name=”post_comments” ][/sc]
In the days before electronic flight bags, the duffels filled with the necessary performance, operational, and navigation paper were a weight and balance line item, especially with a full set of instrument approach plates. When formatted as electrons, all this necessary information weighs no more than the electronic device that stores and displays it.
As EFBs proved their reliability, many pilots reduced the redundant paper they carried on every flight, following the insuccinct guidance found in Advisory Circular 91-78, Use of Class 1 or Class 2 Electronic Flight Bags, which the FAA issued on July 20, 2007. For newcomers and those who might not remember, a Class 1 EFB is a portable electronic device, most commonly an Apple iPad. Class 2 EFB can also be an iPad, but a Class 2 device must be “attached or secured to a permanently installed aircraft mount during use.”
The new EFB guidance, Advisory Circular 91-78A, Use of Electronic Flight Bags, dated February 23, 2024, resolves the redundant paper question. “EFB systems may be used in conjunction with, or to replace, the paper reference material that pilots typically carry in the flight deck. EFBs can electronically store and retrieve information required for flight operations, such as the POH and supplements, minimum equipment lists (MEL), W&B calculations, aeronautical charts, and terminal procedures.”
In all phases of flight, an EFB can replace paper when the information it displays 1. does not replace any system or equipment (e.g., navigation, communication, or surveillance system) that is required by part 91; 2. displays only information which is functionally equivalent to the paper reference material which the information is replacing or is substituted for; 3. the interactive or precomposed information being used for navigation or performance planning is current, up to date, and valid, as verified by the pilot; and 4. the operator complies with requirements of §91.21 to ensure that the use of the EFB does not interfere with equipment or systems required for flight.
Curiously, AC 91-78A makes no reference to the EFB classes mentioned in the superseded AC. That’s because AC 120-76D, Authorization for Use of Electronic Flight Bags, dated October 27, 2017, “Eliminate[d] EFB Classes 1, 2, and 3, and introduce[d] a simpler concept of portable and installed equipment, to harmonize with the International Civil Aviation Organization (ICAO), and to accommodate increasingly complex systems integrating both installed and portable equipment.” It also includes the appendix lists of Type A and Type B EFB applications.
Portable EFBs do not depend on a dedicated aircraft power source or input from navigation equipment to provide display functionality, although they may connect to aircraft power through a certificated power source [but this is always a good idea]; they are not attached to an aircraft mounting device; and are not connected with or receiving data from any aircraft system.
Installed EFBs may receive power from the aircraft that is derived from an electrical bus source protected against short circuits with an appropriately rated circuit breaker or fuse; they may receive position reference from an onboard navigation system, provided such input is designed and integrated in such a manner as to not adversely affect the output of the navigation source to which they are connected; and they may be attached to a mounting device provided that such device is approved for installation into the aircraft (e.g., if intended for installation into a type-certificated aircraft, then such mounting device must meet the requirements of § 21.303.
Portable or installed, the tablet-based EFB is still a single point of failure, which suggests the need for some sort of backup. Many pilots say their smart phones meet this need nicely, and some go a step further by slipping a fully charged power bank and the necessary cables into their headset bag, Others still carry some redundant paper because essential information such as a navigation log and maps for the flight don’t require batteries or a working display to read them. Fire is their only real failure mode, and in that case a pilot has a more pressing problem. Forgetting to bring some sort of backup EFB is another form of failure, but this one is pilot error. — Scott Spangler, Editor