• Confessions of a New Corporate Pilot

    by

    [sc name=”post_comments” ][/sc]

    In the Citation III

    Confessions of a New Corporate Pilot

    Life would be sweet, I thought, now that I’d successfully passed my Cessna Citation III (CE-650) type rating check ride (this was a few years back). It meant I’d be flying my first swept-wing jet. Surprisingly, my first day at the new job at Chicago Executive Airport (PWK) would also be the first time I’d been up close to a real Citation III since all the training and even my check ride happened in FlightSafety’s full-motion simulator.

    From my research, though, I knew the 650’s cabin was roomy enough for eight, and its rocket-like performance was nothing short of spectacular with a VMO (maximum operating Mach) of Mach 0.85 and 39,000 feet on a standard day. In its day, M.83 was pretty fast. That meant we could make the West Coast out of PWK with four people in the back. I learned quickly, too, that the 650’s awesome performance meant I needed to stay much farther ahead of the airplane than I’d had to in the much slower Citation II (CE-550) I’d been flying in a 12-pilot charter department.

    A privately held corporation owned this Citation III and I was the junior of three pilots. The chief pilot, my new boss, brought experience from several other flight departments, while the other pilot, I’ll call him Tom well, I was never really too sure where Tom had come from because the guy kept to himself as much as possible and wasn’t the chatty type. That made three-hour flights long when the entire conversation at FL390 ended with an occasional shrug of the shoulders.

    But who cared what one guy acted like, I thought. I was there to learn how to fit into a flight department that needed another pilot on their team. Just like in charter flying, my job was to keep the people in the back happy. I came to know these passengers much better than we ever did in the charter world. These folks sometimes invited the flight crew to their home on Nantucket when we overnighted there.

    The Interview

    Looking back on this job now though, I guess the 10-minute interview the chief pilot and I engaged in before he offered me the job should have been a tip-off that maybe something was a little odd. But with a four-year-old daughter growing up at home, the chance to dump my charter department pager that always seemed to ring at 2 a.m. beckoned hypnotically.

    Cessna Citation CE-650

    Corporate line training began right away with me flying in all kinds of weather, where I regularly rotated flying left seat with the chief pilot and Tom. Having flown left seat on the Citation II, I wasn’t brand new to jets, just speedy ones.

    After a few months, however, I began to notice a few operational oddities that started making me a little uncomfortable. Some sketchy flight planning and questions I asked were sometimes answered with annoyed expressions. If I appeared not to agree, someone might ask if I’d finished all the Jepp revisions (In those days there were no electronic subscriptions. Updates were handled by hand). I found the best solution for getting along seemed to be to just shut up and fly the airplane. Ignoring those distractions did help me pay closer attention to the little things that made my flying the jet smoother.

    Then again … On one flight back from Cincinnati (CVG), I was flying left-seat with the chief pilot in the right. I wanted to add fuel before we left since the Chicago weather was questionable, but the boss overruled me explaining, “We’re fat on fuel.”I didn’t say anything. As we approached PWK, the ATIS reported the weather had worsened, considerably. The Swiss cheese holes began to align when Chicago Approach dumped us early. We ended up burning more fuel than planned. I flew the ILS right down to minimums, but my scan uncomfortably included the fuel gauges every few seconds. After a safe landing, we taxied in with 700 pounds of Jet-A, not much for an airplane that burns 1,800 pounds an hour down low. What if we’d missed at Chicago Executive Airport and needed to run for Chicago’s O’Hare International Airport I wondered? We’d have arrived on fumes. The boss looked at me after we shut down. “Don’t tell me that whole thing bothered you. It all turned out fine, didn’t it?” (more…)

  • Remembering Gordon Baxter: Bax Seat was a Flying Magazine Reader Favorite

    by

    [sc name=”post_comments” ][/sc]

    (Reposted by request)

    Each time I stand near my desk, my eyes naturally focus on the framed cover of the August 1983 Flying magazine. Below it is page 100, the “I Learned About Flying from That” (ILAFFT), where my first column appeared. On it, the author of Bax Seat, scrawled in brown ink, “To my friend Rob Mark. His story, my push. Gordon Baxter, August 5, 1983.”

    Many months before, Gordon Baxter had given me the Flying editor’s phone number. When I rang with my brief pitch, all I heard was “yes.” I suddenly had an assignment for my first column. That 1983 issue was the first, but not the last, time my name and stories appeared in the aviation industry’s iconic magazine. That same issue also ran a pilot report about the then-new Cessna Citation III, an aircraft I later added to my list of type ratings. Looking back, there were so many aspects of my aviation career that came to life around Bax and that August 1983 issue, not the least of which was that we became friends.

    Gordon Baxter, Bax as he preferred folks call him, helped shape my career as an aviation journalist like no one before him and only a few people since. The author of 13 books, Bax’s own magazine writing career at Flying spanned 25 years. His monthly column, Bax Seat, focused on vivid descriptions of his adventures. It was known simply as “Bax Seat.” Did I mention he was also a long-time radio personality in Beaumont, Texas, another interest we shared.

    A Bit of Bax’s Background

    I first met Bax in the mid-1970s. He brought his show, his act, or whatever the heck he called his evening of storytelling, to the Stick and Rudder Flying Club at Waukegan Airport. I was a tower controller not far away at Palwaukee Airport. Having been an avid Flying reader since high school, I switched shifts with another controller so I wouldn’t miss the event. Bax captured the audience for over an hour with stories from his flying career and his columns that often alternately “em rollin’ in the aisles” with gut-wrenching laughter and an emotional Texas-guy style that also brought tears to many an eye. Another way to think of Bax’s storytelling night was like an evening of improv but all about flying and airplanes.

    Born in Port Arthur, Texas, he learned to fly after World War II following his stint as a B-17 turret gunner. Bax was no professional pilot—just a guy with a private certificate, an instrument rating, and eventually his beloved Mooney. On the back cover of one of his books, appropriately titled Bax Seat, Flying’s Stephan Wilkinson said “Bax tries to pass himself off as a pilot, but don’t believe him. He never could fly worth a damn. But Gordon feels airplanes, loves and honors them in ways that the rest of us are ashamed to admit. And he’s certainly one of the few romantics who can express what he feels so perfectly.” I couldn’t have written that myself, but I, too, felt it.

    (more…)
  • Making the Brazilian ATR-72 Spin

    by

    [sc name=”post_comments” ][/sc]

    danilosantosspotter

    Note: This story was corrected on August 10th at 10:23 am, thanks to the help of a sharp-eyed reader.

    Making an ATR-72 Spin

    I wasn’t in Brazil on Friday afternoon, but I saw the post on Twitter or X (or whatever you call it) showing a Brazil ATR-72, Voepass Airlines flight 2283, rotating in a spin as it plunged to the ground near Sao Paulo from its 17,000-foot cruising altitude. All 61 people aboard perished in the ensuing crash and fire. A timeline from FlightRadar 24 indicates that the fall only lasted about a minute, so the aircraft was clearly out of control. Industry research shows Loss of Control in Flight (LOCI) continues to be responsible for more fatalities worldwide than any other kind of aircraft accident.

    The big question is why the crew lost control of this airplane. The ADS-B data from FlightRadar 24 does offer a couple of possible clues. The ATR’s speed declined during the descent rather than increased, which means the aircraft’s wing was probably stalled. The ATR’s airfoil had exceeded its critical angle of attack and lacked sufficient lift to remain airborne. Add to this the rotation observed, and the only answer is a spin.

    Can a Large Airplane Spin?

    The simple answer is yes. If you induce rotation to almost any aircraft while the wing is stalled, it can spin, even an aircraft as large as the ATR-72. By the way, the largest of the ATR models, the 600, weighs nearly 51,000 pounds.

    Of course, investigators will ask why the ATR’s wing was stalled. It could have been related to a failed engine or ice on the wings or tailplane. (more…)

  • How the FAA Let Remote Tower Technology Slip Right Through Its Fingers

    by

    [sc name=”post_comments” ][/sc]

    In June 2023, the FAA published a 167-page document outlining the agency’s desire to replace dozens of 40-year-old airport control towers with new environmentally friendly brick-and-mortar structures. These towers are, of course, where hundreds of air traffic controllers ply their trade … ensuring the aircraft within their local airspace are safely separated from each other during landing and takeoff.

    The FAA’s report was part of President Biden’s Infrastructure Investment and Jobs Act enacted on November 15, 2021. That bill set aside a whopping $25 billion spread across five years to cover the cost of replacing those aging towers. The agency said it considered a number of alternatives about how to spend that $5 billion each year, rather than on brick and mortar buildings.

    One alternative addressed only briefly before rejecting it was a relatively new concept called a Remote Tower, originally created by Saab in Europe in partnership with the Virginia-based VSATSLab Inc. The European technology giant has been successfully running Remote Towers in place of the traditional buildings in Europe for almost 10 years. One of Saab’s more well-known Remote Tower sites is at London City Airport. London also plans to create a virtual backup ATC facility at London Heathrow, the busiest airport in Europe.

    A remote tower and its associated technology replace the traditional 60-70 foot glass domed control tower building you might see at your local airport, but it doesn’t eliminate any human air traffic controllers or their roles in keeping aircraft separated.

    Max Trescott photo

    Inside a Remote Tower Operation

    In place of a normal control tower building, the airport erects a small steel tower or even an 8-inch diameter pole perhaps 20-40 feet high, similar to a radio or cell phone tower. Dozens of high-definition cameras are attached to the new Remote Tower’s structure, each aimed at an arrival or departure path, as well as various ramps around the airport.

    Using HD cameras, controllers can zoom in on any given point within the camera’s range, say an aircraft on final approach. The only way to accomplish that in a control tower today is if the controller picks up a pair of binoculars. The HD cameras also offer infrared capabilities to allow for better-than-human visuals, especially during bad weather or at night.

    The next step in constructing a remote tower is locating the control room where the video feeds will terminate. Instead of the round glass room perched atop a standard control tower, imagine a semi-circular room located at ground level. Inside that room, the walls are lined with 14, 55-inch high-definition video screens hung next to each other with the wider portion of the screen running top to bottom.

    After connecting the video feeds, the compression technology manages to consolidate 360 degrees of viewing area into a 220-degree spread across the video screens. That creates essentially the same view of the entire airport that a controller would normally see out the windows of the tower cab without the need to move their head more than 220 degrees. Another Remote Tower benefit is that each aircraft within visual range can be tagged with that aircraft’s tail number, just as it might if the controller were looking at a radar screen. (more…)

  • Who Trains Today’s Navigators?

    by

    [sc name=”post_comments” ][/sc]

    Continuing my curiosity quest inspired by Can GPS Spoofing Fool a Flight Navigator?, it seems that the US Air Force and Navy are the only reliable sources of air navigator training available today. But in either case, it is not a dedicated aviation occupation, as it once was during World War II, for example. In 2009, the Air Force merged its three Undergraduate Navigator Training tracks—navigator, weapon systems officer (WSO), and electronic warfare officer (EWO)—into a single training program. The resulting combat systems officer (CSO) training produces aviators who can readily adapt to mission requirements.

    The 2009 consolidation of navigator training coincided with the closure of Mather AFB, where the Air Force trained them. Since then, CSO start their education at NAS Pensacola, Florida, with the Navy’s Training Air Wing Six, which educates naval flight officers. Established in 1966, NFOs specialize in airborne weapon sensor systems, and navigation is a fundamental duty, especially in tactical jets like the bombardier-navigators on A-6 Intruders. Given the increased navigation challenges posed by the mobility of not only their targets but especially their aircraft carrier mothership, navigation has been an especially critical skill for all naval aviation crews, and why cockpit plotting boards were standard equipment on single-engine naval aircraft during World War II.

    Responding to my call to communicate with someone who holds an FAA navigator certificate, in an email, Al Herndon of Virginia sent a photo of his FLIGHT NAVIGATOR CERTIFICATE, Cert. No. 1924091, originally issued in 1969 (which I will not share for privacy reasons). What follows is his fascinating journey.

    “In 1967, I was a Navy pilot flying C-130s in and out of Vietnam. In those days, ALL multi-engine pilots in the Navy were required to go to the Navy’s Navigator Training Squadron (VT-29) after they received their Naval Aviator’s Wings and before reporting to their first squadron. So, ALL Navy multi-engine pilots had to be a qualified Navy navigator.

    “My first squadron was Naval Air Transport Squadron Three (VR-3) at McGuire AFB, New Jersey. VR-3 was part of the Military Air Transport Service (MATS). After VR-3 I received orders back to VT-29 at NAS Corpus Christi as a pilot flying Air Force T-29s (Convair 440s) celestial navigator training aircraft (on loan from the USAF Navigator Training School at Mather AFB) and Navy C-117s (DC-3s) celestial navigator training aircraft. All VT-29 pilots had to qualify as Navy Navigator Instructors, so I went through the school a second time.

    “In 1968 I left the Navy and went to work for Pan American World Airways as a Boeing 707 Relief Co-Pilot (RCO) based in San Francisco. Pan Am was in the process of firing all their Professional Navigators and installing Litton Inertial Navigation Systems (INS) in their B-707s. That didn’t work out well (long story) and in 1969 Pan Am sent the bottom 200 pilots to its Navigator Training School. The FAA had suddenly mandated that a Flight Navigator was required again on San Francisco based flights south and west of Honolulu and on any flight where one of the dual Doppler units was INOP.

    “Consequently (I was 20 from the bottom of the Pan Am seniority list) I went to the Pan Am’s Navigator Training School, completed ground school (4 weeks), passed the FAA Navigator Written Test. With an instructor, I flew as a student on four navigator training flights, all night flights to and from Honolulu, and then passed a check ride with a FAA Examiner, a night flight to Honolulu.

    “The navigator FAA Written Test made the ATP Exam look like child’s play. We were bombarded with questions (and answers) for two days before the exam. Even with all my prior experience and four additional weeks of ground school (which was basically a refresher for me) I have always wondered if I could have passed that exam without the “gouge. Pan Am furloughed me in 1970 and I went to work for Trans World Airlines, where I retired as a Boeing 767 captain.

    “Since one can install a portable GPS in any aircraft, a certified FLIGHT NAVIGATOR is no longer required. However, to fly oceanic an operator needs to comply with AC 91-70C AND have the OPSPECS required in the FAA “Oceanic and Remote Continental Operations” guide. Both require “training” but no requirement for a Navigator certificate if the required equipment is installed in the aircraft.

    “After retiring from TWA I worked for 19 years at The MITRE Corporation [the FAA’s federally funded R&D Center] in their Center for Advanced Aviation Systems Development (CAASD), where I was a [subject matter expert] for flight management computers and Performance Based Aviation and company liaison to both domestic and international airlines. One time I observed a FAA ramp check of a Colombian cargo DC-8 in Miami and both their VOR/DME and ADF’s were INOP, however; they had one portable Garmin GPS with wire antenna that was attached to the captain’s side window with a suction cup. That satisfied the FAA inspector that they could legally depart Miami.

    “During the years at MITRE I occasionally asked FAA Flight Standards if there was anyone left that could give a Flight Navigator initial or line check and the answer was always (paraphrasing), “Who knows?” One FAA friend told me that they could give the written test if they could find a copy and they could probably work something out for a check ride but they always asked, “Why would someone want that qual?”, and where would the applicant get the required flight experience?”

    “I have asked a friend who currently works in Flight Standards if there is still a way to get a Navigator license and he said he would check with AFS-600 and would get back to me. My gut feeling is that it will be a lost art.”

    Given the results of my curiosity quest, I must agree with Al. But the problem is that complacent reliance on a single source for a critical component of aviation safety, such as knowing where you are and how to get where you want to go, is an invitation to unwanted destinations. — Scott Spangler, Editor

    PS email from Al Herndon: “Just heard back from a friend of mine who used to be in AFS-600 and is now a manager in 800. He said that the FAA (AFS-800) still has the Flight Navigator Certificate, but he’s not sure if there are any FAA designees left that can issue it (I think that the FAA would need to “create one” if a request came in). He asked if someone is actually trying to get a Flight Navigator Certificate — and if so — to let him know.”

  • Flight Planning Demands a Dose of Common Sense

    by

    [sc name=”post_comments” ][/sc]

    Decades ago, when I learned to fly, it was well-known that a commercial co-pilot/first officer was allowed to occupy the right seat of a transport airplane only if they’d proven themselves subservient enough to understand that the guy in the left seat was perfectly capable of handling the airplane all by himself.

    Captains believed the FO was only there to check a regulatory box. If the co-pilot was lucky, the captain might let them work the radios and help with a few navigational duties, but the phrase “Gear up and Shut up” was considered a normal cockpit environment.

    Questions, opinions, or ideas from the right seat were not welcomed. If the FO had learned anything, it would have been by accident. And there were plenty of accidents; a few airliner crashes a month, while tragic, were not unheard of.

    In 1979, a pivotal moment in aviation history occurred when NASA psychologist John Lauber’s research team revealed that human error was the cause of nearly 75 percent of commercial aviation accidents. This finding highlighted the role of communication, decision-making, and leadership in cockpit behavior and the resulting accidents. It also led to the birth of cockpit resource management (CRM); a process designed to train crews to utilize all the flight deck’s human resources effectively. CRM became a leading force in preventing ‘pilot error’ and reducing accidents. Pilots actually began talking with each other before making any life-or-death decisions. Later, the Commercial Aviation Safety Team (CAST) combined with CRM (now called crew resource management) led to a global reduction of air carrier accidents. There hasn’t been a fatal air carrier accident in the US since 2009.

    Despite the incredible improvements in commercial aviation safety, the same cannot be said for general aviation. The fatal accident statistics remain alarming despite the dedicated efforts and safety enhancements from groups like the General Aviation Joint Safety Committee (GAJSC). Nearly 50 years after NASA’s groundbreaking research, most accidents in non-airliner flights are still attributed to pilot error, indicating that much work is yet to be done in this sector.

    Hawker Accident at Aspen

    On February 21, 2022, the crew and four passengers aboard a Hawker 800 nearly lost their lives when the twin-engine business jet sailed off the end of Runway 33 into soft snow at Aspen Pitkin County Airport (ASE), Colorado, during its takeoff run. The aircraft sustained substantial damage to the right wing and fuselage.

    Unique to this accident was the wind that morning. “The ATIS indicated the wind was from 170° at 18 knots and gusting to 30 knots,” according to the NTSB’s final report. That represented nearly a direct tailwind at takeoff. The Hawker certification limits the aircraft to a tailwind component of no more than 10 knots for landing or takeoff.

    I took a special interest in this accident because I’ve flown in and out of ASE many times and also flew the Hawker 800. (more…)

  • EFB Schooling: In-Flight Information Guidance

    by

    [sc name=”post_comments” ][/sc]

    Pursuing my schooling on computer-aided flight plans, usually generated by an electronic flight bag (EFB—see Are You Current with the New Airman Certification Standards? for my ACS motivation), has led me to an FAA advisory circular, Use of Flight Deck Displays of Digital Weather and Aeronautical Information. Dated June 3, 2024, the 52-page AC 00-63B cancels its decade old predecessor.

    It focuses on FAA and commercial flight information services (FIS) delivered via ADS-B’s Universal Access Transceiver (UAT) data link connection. As the AC defines it, “FIS is a service that provides meteorological information (METI) and Aeronautical Information (AI) to enhance pilot awareness of weather and/or airspace constraints while providing information for decision support tools and improving safety.”

    To a point, this coincides with my ADS-B education when the FAA introduced that system as part of the Next Generation Air Transportation System, aka NextGen. What I remember as weather and traffic services are now METI and AI. This suggests a more robust offering of essential information that is typically displayed through an EFB. Appreciating the immediate benefits of having graphical weather and related aeronautical information in the cockpit quickly recalled 1990-something memories of my first IFR cross-country in actual instrument meteorological conditions.

    Strapped to a 180-horse Skyhawk with dual nav/comms, I was on my way back to Kansas City from Chicagoland. The ink on my instrument rating wasn’t dry, and I spent more time talking to Flight Service about the weather around me than I did ATC. Having an EFB would have made my deviations around that weather would have reduced the stress of hand-flying almost the entire route in the rain-battering clagg.

    An EFB could have replaced my pre- and in-flight Flight Service conversations. “Flight planning via a data link service and using a portable or installed Electronic Flight Bag (EFB), whether on the ground or airborne, is an acceptable use of AI and METI data link services,” the AC said. It also warned that “METI and AI are highly dynamic and time-sensitive,” and that pilots should be cognizant of the latency involved. What, I wonder, is the latency of a staticky radio conversation with Flight Service?

    And then there’s the different comprehension of words and pictures to consider. Thankfully, the AC provides some latency context. “For example, since initial processing and transmission of Next Generation Weather Radar (NEXRAD) data can take several minutes, pilots must assume that data link weather information will always be a minimum of 7 to 8 minutes older than shown on the time stamp. Thus, pilots should only use data link weather radar images for broad strategic avoidance of adverse weather.”

    With this guidance, I have a fuller appreciation of employing an EFB in the private pilot ACS task of preflight planning. With my EFB schooling far from complete, it is clear to me now that working with an EFB can produce a flight plan more comprehensive and nuanced than is possible with old school paper and pencil. In my mind’s eye I can see myself explaining my plan and self-briefed weather information to an examiner who’s asking some very pointed questions. These thoughts are starting to make me sweat, so I’d better continue my schooling. — Scott Spangler, Editor