• Confessions of a New Corporate Pilot

    by

    [sc name=”post_comments” ][/sc]

    In the Citation III

    Confessions of a New Corporate Pilot

    Life would be sweet, I thought, now that I’d successfully passed my Cessna Citation III (CE-650) type rating check ride (this was a few years back). It meant I’d be flying my first swept-wing jet. Surprisingly, my first day at the new job at Chicago Executive Airport (PWK) would also be the first time I’d been up close to a real Citation III since all the training and even my check ride happened in FlightSafety’s full-motion simulator.

    From my research, though, I knew the 650’s cabin was roomy enough for eight, and its rocket-like performance was nothing short of spectacular with a VMO (maximum operating Mach) of Mach 0.85 and 39,000 feet on a standard day. In its day, M.83 was pretty fast. That meant we could make the West Coast out of PWK with four people in the back. I learned quickly, too, that the 650’s awesome performance meant I needed to stay much farther ahead of the airplane than I’d had to in the much slower Citation II (CE-550) I’d been flying in a 12-pilot charter department.

    A privately held corporation owned this Citation III and I was the junior of three pilots. The chief pilot, my new boss, brought experience from several other flight departments, while the other pilot, I’ll call him Tom well, I was never really too sure where Tom had come from because the guy kept to himself as much as possible and wasn’t the chatty type. That made three-hour flights long when the entire conversation at FL390 ended with an occasional shrug of the shoulders.

    But who cared what one guy acted like, I thought. I was there to learn how to fit into a flight department that needed another pilot on their team. Just like in charter flying, my job was to keep the people in the back happy. I came to know these passengers much better than we ever did in the charter world. These folks sometimes invited the flight crew to their home on Nantucket when we overnighted there.

    The Interview

    Looking back on this job now though, I guess the 10-minute interview the chief pilot and I engaged in before he offered me the job should have been a tip-off that maybe something was a little odd. But with a four-year-old daughter growing up at home, the chance to dump my charter department pager that always seemed to ring at 2 a.m. beckoned hypnotically.

    Cessna Citation CE-650

    Corporate line training began right away with me flying in all kinds of weather, where I regularly rotated flying left seat with the chief pilot and Tom. Having flown left seat on the Citation II, I wasn’t brand new to jets, just speedy ones.

    After a few months, however, I began to notice a few operational oddities that started making me a little uncomfortable. Some sketchy flight planning and questions I asked were sometimes answered with annoyed expressions. If I appeared not to agree, someone might ask if I’d finished all the Jepp revisions (In those days there were no electronic subscriptions. Updates were handled by hand). I found the best solution for getting along seemed to be to just shut up and fly the airplane. Ignoring those distractions did help me pay closer attention to the little things that made my flying the jet smoother.

    Then again … On one flight back from Cincinnati (CVG), I was flying left-seat with the chief pilot in the right. I wanted to add fuel before we left since the Chicago weather was questionable, but the boss overruled me explaining, “We’re fat on fuel.”I didn’t say anything. As we approached PWK, the ATIS reported the weather had worsened, considerably. The Swiss cheese holes began to align when Chicago Approach dumped us early. We ended up burning more fuel than planned. I flew the ILS right down to minimums, but my scan uncomfortably included the fuel gauges every few seconds. After a safe landing, we taxied in with 700 pounds of Jet-A, not much for an airplane that burns 1,800 pounds an hour down low. What if we’d missed at Chicago Executive Airport and needed to run for Chicago’s O’Hare International Airport I wondered? We’d have arrived on fumes. The boss looked at me after we shut down. “Don’t tell me that whole thing bothered you. It all turned out fine, didn’t it?” (more…)

  • Remembering Gordon Baxter: Bax Seat was a Flying Magazine Reader Favorite

    by

    [sc name=”post_comments” ][/sc]

    (Reposted by request)

    Each time I stand near my desk, my eyes naturally focus on the framed cover of the August 1983 Flying magazine. Below it is page 100, the “I Learned About Flying from That” (ILAFFT), where my first column appeared. On it, the author of Bax Seat, scrawled in brown ink, “To my friend Rob Mark. His story, my push. Gordon Baxter, August 5, 1983.”

    Many months before, Gordon Baxter had given me the Flying editor’s phone number. When I rang with my brief pitch, all I heard was “yes.” I suddenly had an assignment for my first column. That 1983 issue was the first, but not the last, time my name and stories appeared in the aviation industry’s iconic magazine. That same issue also ran a pilot report about the then-new Cessna Citation III, an aircraft I later added to my list of type ratings. Looking back, there were so many aspects of my aviation career that came to life around Bax and that August 1983 issue, not the least of which was that we became friends.

    Gordon Baxter, Bax as he preferred folks call him, helped shape my career as an aviation journalist like no one before him and only a few people since. The author of 13 books, Bax’s own magazine writing career at Flying spanned 25 years. His monthly column, Bax Seat, focused on vivid descriptions of his adventures. It was known simply as “Bax Seat.” Did I mention he was also a long-time radio personality in Beaumont, Texas, another interest we shared.

    A Bit of Bax’s Background

    I first met Bax in the mid-1970s. He brought his show, his act, or whatever the heck he called his evening of storytelling, to the Stick and Rudder Flying Club at Waukegan Airport. I was a tower controller not far away at Palwaukee Airport. Having been an avid Flying reader since high school, I switched shifts with another controller so I wouldn’t miss the event. Bax captured the audience for over an hour with stories from his flying career and his columns that often alternately “em rollin’ in the aisles” with gut-wrenching laughter and an emotional Texas-guy style that also brought tears to many an eye. Another way to think of Bax’s storytelling night was like an evening of improv but all about flying and airplanes.

    Born in Port Arthur, Texas, he learned to fly after World War II following his stint as a B-17 turret gunner. Bax was no professional pilot—just a guy with a private certificate, an instrument rating, and eventually his beloved Mooney. On the back cover of one of his books, appropriately titled Bax Seat, Flying’s Stephan Wilkinson said “Bax tries to pass himself off as a pilot, but don’t believe him. He never could fly worth a damn. But Gordon feels airplanes, loves and honors them in ways that the rest of us are ashamed to admit. And he’s certainly one of the few romantics who can express what he feels so perfectly.” I couldn’t have written that myself, but I, too, felt it.

    (more…)
  • Making the Brazilian ATR-72 Spin

    by

    [sc name=”post_comments” ][/sc]

    danilosantosspotter

    Note: This story was corrected on August 10th at 10:23 am, thanks to the help of a sharp-eyed reader.

    Making an ATR-72 Spin

    I wasn’t in Brazil on Friday afternoon, but I saw the post on Twitter or X (or whatever you call it) showing a Brazil ATR-72, Voepass Airlines flight 2283, rotating in a spin as it plunged to the ground near Sao Paulo from its 17,000-foot cruising altitude. All 61 people aboard perished in the ensuing crash and fire. A timeline from FlightRadar 24 indicates that the fall only lasted about a minute, so the aircraft was clearly out of control. Industry research shows Loss of Control in Flight (LOCI) continues to be responsible for more fatalities worldwide than any other kind of aircraft accident.

    The big question is why the crew lost control of this airplane. The ADS-B data from FlightRadar 24 does offer a couple of possible clues. The ATR’s speed declined during the descent rather than increased, which means the aircraft’s wing was probably stalled. The ATR’s airfoil had exceeded its critical angle of attack and lacked sufficient lift to remain airborne. Add to this the rotation observed, and the only answer is a spin.

    Can a Large Airplane Spin?

    The simple answer is yes. If you induce rotation to almost any aircraft while the wing is stalled, it can spin, even an aircraft as large as the ATR-72. By the way, the largest of the ATR models, the 600, weighs nearly 51,000 pounds.

    Of course, investigators will ask why the ATR’s wing was stalled. It could have been related to a failed engine or ice on the wings or tailplane. (more…)

  • How the FAA Let Remote Tower Technology Slip Right Through Its Fingers

    by

    [sc name=”post_comments” ][/sc]

    In June 2023, the FAA published a 167-page document outlining the agency’s desire to replace dozens of 40-year-old airport control towers with new environmentally friendly brick-and-mortar structures. These towers are, of course, where hundreds of air traffic controllers ply their trade … ensuring the aircraft within their local airspace are safely separated from each other during landing and takeoff.

    The FAA’s report was part of President Biden’s Infrastructure Investment and Jobs Act enacted on November 15, 2021. That bill set aside a whopping $25 billion spread across five years to cover the cost of replacing those aging towers. The agency said it considered a number of alternatives about how to spend that $5 billion each year, rather than on brick and mortar buildings.

    One alternative addressed only briefly before rejecting it was a relatively new concept called a Remote Tower, originally created by Saab in Europe in partnership with the Virginia-based VSATSLab Inc. The European technology giant has been successfully running Remote Towers in place of the traditional buildings in Europe for almost 10 years. One of Saab’s more well-known Remote Tower sites is at London City Airport. London also plans to create a virtual backup ATC facility at London Heathrow, the busiest airport in Europe.

    A remote tower and its associated technology replace the traditional 60-70 foot glass domed control tower building you might see at your local airport, but it doesn’t eliminate any human air traffic controllers or their roles in keeping aircraft separated.

    Max Trescott photo

    Inside a Remote Tower Operation

    In place of a normal control tower building, the airport erects a small steel tower or even an 8-inch diameter pole perhaps 20-40 feet high, similar to a radio or cell phone tower. Dozens of high-definition cameras are attached to the new Remote Tower’s structure, each aimed at an arrival or departure path, as well as various ramps around the airport.

    Using HD cameras, controllers can zoom in on any given point within the camera’s range, say an aircraft on final approach. The only way to accomplish that in a control tower today is if the controller picks up a pair of binoculars. The HD cameras also offer infrared capabilities to allow for better-than-human visuals, especially during bad weather or at night.

    The next step in constructing a remote tower is locating the control room where the video feeds will terminate. Instead of the round glass room perched atop a standard control tower, imagine a semi-circular room located at ground level. Inside that room, the walls are lined with 14, 55-inch high-definition video screens hung next to each other with the wider portion of the screen running top to bottom.

    After connecting the video feeds, the compression technology manages to consolidate 360 degrees of viewing area into a 220-degree spread across the video screens. That creates essentially the same view of the entire airport that a controller would normally see out the windows of the tower cab without the need to move their head more than 220 degrees. Another Remote Tower benefit is that each aircraft within visual range can be tagged with that aircraft’s tail number, just as it might if the controller were looking at a radar screen. (more…)

  • Aerostats: A Stratospheric Gulf of Tonkin?

    by

    [sc name=”post_comments” ][/sc]

    The recent political and military focus on aerostats—balloons—and the resulting cyclone of incomplete communication of verifiable concrete details, the confusion resulting from people demonstrating that they possess no knowledge or understanding of what they are talking about, and premeditated disinformation that supports their individual agendas brings to mind the Gulf of Tonkin Incident.

    For the forgetful or those for whom history is a tedious exercise that impedes their current plans, in 1964 the administration of Lydon B. Johnson manufactured a single incident into a situation that “justified” further American participation in its next long-term conflict. It seems now that the USS Maddox, a destroyer conducting covert signals intelligence in the Gulf, did share the Gulf with three North Vietnamese patrol boats, but the government created the subsequent attacks to support its decision to get the military more involved.

    The situation with the Chinese reconnaissance balloon seems eerily familiar. Other than taking the government’s word for it, there has been no verifiable display of concrete proof that the balloon was actually Chinese, and that it we dedicated to collecting intelligence of the areas it floated over. Call me a cynical skeptic, I won’t believe what the government says—and the media reports—until the balloon’s are open for public display and inspection, like the Russians did with the remains of Francis Gary Power’s U-2 in 1960.

    Like the manufactured subsequent “attacks” in the Gulf of Tonkin, the government has ordered the downing of two other aerostats. They have suspended the search for the resulting wreckage, and the only telling “proof” so far released was some audio of some poor F-16 pilot who said he couldn’t go slow enough to get a good look at the target.

    Duh. It is an aerostat. As anyone whose enjoyed a flight in a hot air balloon, even inf the breeze is blowing at triple-digit jet stream speeds, there is no slipstream because it floats with the wind. Wind speed matters most on takeoff and landing because it tells you how quickly the breeze will drag you across the terrain. Because an aerostat goes where the wind blows, that’s why the Department of Homeland Security tethers its radar surveillance balloons to Mother Earth.

    Early reports by reputable media outlets like the New York Times repeated the claims of unidentified by knowledgeable sources that the Chinese could control the flightpath of their balloon. There’s been no proof of the systems that might make this possible. Now, it seems, copy editor and fact checkers are starting to calm the political hysteria of guiding public opinion through being afraid of something. Which, unfortunately, always seems to be the point of these manufactured situations.

    The only thing the government—any government—truly achieves through such shenanigans is that the people they are trying to control through fear take their distrust of the government to a higher level (and yet, we continue to reelect them, which says equally as much about our society). Logic suggests that in such situations, people would demand, and the powers involved would calmly convey the situation and share the evidence openly in the light of day. And when they don’t, that says something in that evidence contradicts the ultimate goal of their premeditated agenda. Scott Spangler, Editor

  • Finding Space Weather Reports

    by

    [sc name=”post_comments” ][/sc]

    If you keep reading the Aviation Weather Handbook, FAA-H-8083-28, you’ll learn that space weather reports are officially known at the Space Weather Advisory in chapter 26.7. It is a newcomer to the universe of meteorology. The International Civil Aviation Organization (ICAO) brought it into being in late 2019.

    It unites the services of four “global space weather providers.” In the United States, the NOAA Space Weather Prediction Center (SWPC) is the go-to source. Then there is the consortium of space weather agencies from Australia, Canada, France, and Japan (ACFJ). Next in the space weather acronym parade is PECASUS, for the Pan-European Consortium for Aviation Space Weather Services. Finland leads this group that includes Belgium, the United Kingdom, Poland, Germany, Netherlands, Italy, Austria, and Cyprus. The China-Russian Federation Consortium (CRC) rounds out the quartet.

    On a rotating basis, the members of this space weather quartet issue global Space Weather Advisories when processes are occurring on the Sun or in the Earth’s magnetosphere, ionosphere, and thermosphere that could have a potential impact to the near-Earth environment. The specific targets are high-frequency communications, satellite communications, satellite-based navigation and surveillance systems (GNSS), and when heightened radiation occurs above Flight Level 250.

    When space weather crosses one of ICAOs predefined thresholds for moderate (MOD) and severe (SEV) impacts, the member of the quarter whose turn it is issues a Space Weather Advisory. The table presenting the thresholds subdivides the effects, sub-effects, and MOD and SEV impacts within the advisory areas. Of operational interest to aviators are possible degraded or unreliable services.

    In 6, 12, 18, and 24-hour forecasts, the Space Weather Advisory defines the affected area of the globe in one of three ways. The easiest to picture is the Daylight Side. Then there are six pre-defined 30°-wide latitude bands that work their ways north and south from the equator. Finally, there is a polygon patch defined by latitude and longitude coordinates.

    The handbook next delves into the alphanumeric format of the Space Weather Advisory. If you’re interested in seeing it, or you need to comprehend it to increase your operational safety, set aside some study time.

    For the merely curious, spending time on NOAA SWPC website is more rewarding. The color-coded Space Weather Scales break down the consequences, from extreme to minor, for Geomagnetic Storms, Solar Radiation Storms, and (most important to aviators) Radio Blackouts, subdivided by HF radio and the spectrum of navigation systems.

    A single glance at the SWPC homepage briefs you on the 24-hour observed maximums and latest observed conditions for R (radio blackouts), S (solar radiation storms), and G (geomagnetic storms) based on the scales. When I looked at them, each reported “none.” It lists some of the condition below, such as “Solar Wind Speed: 468 km/sec.”

    The site provides current (space) news and features on such topics as the “Green Comet” and more specific information for the various space weather communities, including aviation, GPS, radio communications, satellites, and space weather geeks. Because it’s listed first, I’m guessing the Aurora community is the most popular, which seems only right and true for space weather’s only esthetically pleasing consequence. — Scott Spangler, Editor

  • Space Weather: Expand Your Meteorological Sphere

    by

    [sc name=”post_comments” ][/sc]

    Right after pounding the final words of Reading the Weather into my computer, I opened the Aviation Weather Handbook, FAA-H-8083-28 and scrolled to Chapter 23. At first glance, space weather stands tall as a meteorological oxymoron. How can weather—the state of the atmosphere with respect to heat or cold, wetness or dryness, calm or storm, clearness or cloudiness—exist in a vacuum?

    It defines Space Weather as “processes occurring on the Sun or in the Earth’s magnetosphere, ionosphere, and thermosphere that could have a potential impact to the near-Earth environment. Space weather phenomena such as solar flares, radiation storms, and geomagnetic storms are some potential concerns for aviation.”

    Okay, so why is it important to atmospheric aviators? Oh, because space weather can affect radio communications, GPS navigation, and expose humans and their avionics to radiation. Tell me more.

    With its uninterrupted luminescence and solar wind, the sun is the primary source of space weather, especially when it is in an eruptive mood. It cyclically spews coronal mass ejections and flares into the void, potentially causing radio blackouts, magnetic storms, and ionospheric and radiation storms on Earth. Contributing sources of space weather include galactic cosmic rays, charged particles born in distant supernovae. Consider it a steady space weather drizzle.

    Unlike an LED bulb, the sun’s energy output changes over time. Sunspots are the handbook’s primary example. Although astronomers have been studying them for centuries, sunspot physics are not fully understood. Their activity waxes and wanes over an 11-year cycle and their activity is “often used for a proxy index for changing space weather conditions.”

    When sunspots erupt, galactic gales blow. Coronal mass ejections (CMEs), flares, and galactic cosmic rays from distant supernovae contribute to solar wind, the breeze of charged particles and a magnetic field of plasma that carries the sun’s stormy energy to Earth. Even when the sun isn’t storming, wind’s constant current of plasma fuels Earth’s geomagnetic field, which in turn defines the globe’s geospace, the area influenced by solar wind.

    Extending in all directions, Earth’s magnetosphere “forms a cocoon for the planet, protecting it from the flow of solar wind. It deflects most of the wind’s energy, but some of it gets through, especially when the sun is storming.” This is when we are most likely to marvel at the aurora undulating in night skies near the polar regions in the northern and southern hemispheres.

    One layer down from the magnetosphere is the ionosphere. It is a shell of plasma where electrons and ions are embedded in the neutral atmosphere of Earth. It begins roughly 80 km above the Earth’s surface. That’s 49.709 miles or 262,467 feet for those without a conversion app close at hand.

    The sun erupts mostly where it is most magnetic (the image of a solar zit comes to mind). Flares and CMEs are the most common because they can be seen from Earth (with the appropriate vision-protective filters). Earthlings have known about solar flares for more than a century. These electromagnetic volcanos erupt with a bright flash that lasts a few minutes, or a few hours. Traveling at the speed of light, their energy instantly affect the sunny side of Earth.

    We really didn’t know about CMEs until the satellite era. Not as bright as a solar flare, CMEs can mature for hours before they erupt. When a large volume of the sun’s corona (its outer atmosphere) erupts, its energy can equal a large solar flare, but its travel time is slower, one to four days. But a CME plays greater havoc to Earth’s magnetic field and can cause the strongest magnetic storms.

    When a geomagnetic storm blows up in the Earth’s magnetic field, the aurora is the only esthetically pleasing consequence. Otherwise, these storms cause nothing but problems for technological systems like aviation’s navigation and communication networks, and they can last for days, with more robust tempests lasting a week.

    This deluge of solar particles and electromagnetic radiation can also stir up the ionosphere and magnetosphere, often at the same time. “The symptoms of an ionospheric storm include enhanced currents, turbulence and wave activity, and a nonhomogeneous distribution of free electrons. This clustering of electrons, which leads to scintillation of signals passing through the cluster, is particularly problematic for the Global Navigation Satellite System (GNSS), which includes the United States’ GPS.” These storms can last a few minutes to a few days, and they often mirror the duration of geomagnetic storms.

    Space Weather Consequences

    The electromagnetics of space weather is what makes it important to Earthly aviation. When line-of-sight VHF communication isn’t possible, as it is over the ocean, airplanes must communicate using High Frequency, which bounces over the horizon, and is usually the first to suffer a solar flare blackout. With some solar storms, this detrimental effect can spill over to 30-300 MHz. That includes the aviation VHF spectrum that spans from 118.000 to 135.975 mHz.

    Satellite signals transit the ionosphere, but their frequencies are usually high enough “for the ionosphere to appear transparent.” But when sufficiently stirred, the ionosphere can scintillate a satellite’s signal, causing “a twinkling in both amplitude and phase that can result in loss-of-lock and the inability for the receiver to track a Doppler-shifted radio wave.”

    This loss-of-lock is one way space weather affects GPS signals. The other two are an increased error of the computed position, and solar radio noise overwhelming the transmitted GPS signal.

    Finally, space weather irradiates pilots, their passengers, and their avionics, especially at higher latitude and flight levels. For the electronic components, the damage comes from “the highly ionizing interactions of cosmic rays, solar particles, and the secondary particles generated in the atmosphere.” And the more modern the avionics, with their ever-shrinking electronic organs, the more susceptible they are to the electronic precipitation from space weather.

    Now that space weather has my attention, my next question is, Where does one get a space weather briefing? Hmm, Chapter 26.7, Space Weather Advisory. Let’s see what it has to say. — Scott Spangler, Editor